Electrician - Block 1 - Module 2 : Basic Electrical - AC circuits

Questions: Level 1

1 How many electrons are there in the copper atom?
A 8
B 13
C $\quad 18$
D 29
2 What is the formula to calculate the equivalent resistance (RT) of the three resistors R1, R2 \& R3 are connected in parallel circuit?
A $\mathrm{RT}=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3$
B $\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{R}_{3}}$
c $\quad R_{T}=\frac{1}{\mathrm{~K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}}$
D $\quad R_{T}=\frac{1}{\frac{1}{\mathrm{R} 1}, \frac{1}{\mathrm{R} 2}, \begin{array}{c}1 \\ \mathrm{R} 3\end{array}}$
3 What is the name of the resistor?

A Metal film resistor
B Wire wound resistor
C Carbon - film resistor
D Carbon composition resistor
4 What electrical quantities are related in Ohm's law?
A Current, resistance and power
B Current, voltage and resistivity
C Current, voltage and resistance
D Voltage, resistance and current density
5 What is the unit of resistivity?
A ohm / cm
B ohm / cm^{2}
C ohm-metre
D ohm / metre
$6 \quad$ What is the formula for Quantity of electricity (Q)?
A Current x Time
B Voltage x Current
C Current x Resistance
D Voltage x Resistance
$7 \quad$ What is the unit of conductance??
A Mho
B Ohm
C Ohm-m
D $\quad \mathrm{Ohm} / \mathrm{m}$
8 What is the S.I unit of specific resistance?
A Ohm/cm
B Ohm/metre ${ }_{2}$
C Ohm-metre
D Micro ohm/cm 2
9 Which formula is used to calculate the power of a DC circuit?
A Voltage x time
B Current x voltage
C Current x resistance
D Voltage x resistance
10 What is the specific resistance value of copper conductor?
A $1.72 \mathrm{Ohm} / \mathrm{cm}^{3}$
B 1.72 Micro ohm
C 1.72 Micro ohm $/ \mathrm{cm}^{3}$
D 1.72 Micro ohm/m
11 What is the formula to find 3 phase Reactive power (PR) if the line voltage is ' V_{L} ' and line current is ' l_{L} '?
A $P_{r}=V_{L} I_{L}$
B $\quad P_{r}=3 V_{L} I_{L} \operatorname{Cos} \theta$
C $\quad P_{r}=\sqrt{ } 3 V_{L} I_{L} \operatorname{Sin} \theta$
D $\quad P_{r}=\sqrt{3} V_{L} I_{L} \operatorname{Cos} \theta$
12 What is the formula for Reactive Power (Pr) in an AC circuit?
A $\quad P_{r}=V I$
B $\quad P_{r}={ }_{2} \mathrm{VI}$
C $\mathrm{P}_{\mathrm{r}}=\mathrm{VI} \cos \theta$
D $\quad \mathrm{P}_{\mathrm{r}}=\mathrm{VI} \sin \theta$
13 What is the phase displacement in a 3phase AC circuit?
A 90°
B 120°
C 180°
D $\quad 270^{\circ}$

14 What is the formula to calculate the impedence (Z) of the R.L.C series circuit, if the inductive reactance $\left(X_{L}\right)$ is less than capacitve recatance $\left(\mathrm{X}_{\mathrm{C}}\right)$?
A $\mathrm{Z}=\mathrm{R}^{2}+\sqrt{\mathrm{XL}^{2}+\mathrm{XC}^{2}}$
B $\quad \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}$
c $\quad \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{XL}^{2}-\mathrm{X}_{\mathrm{C}}\right)^{2}}$
D $\quad Z=\sqrt{R^{2}+\left(X_{C}-X_{L}\right)^{2}}$
15 What is the formula to calculate the three phase active power (P) if the line voltage (VL) and line current is IL and phase angle is ' q '?
A $P=3 V_{L} I_{L} \operatorname{Sin} \theta$
B $P=3 V_{L} I_{L} \operatorname{Cos} \theta$
C $P=\sqrt{3} V_{L} I_{L} \operatorname{Sin} \theta$
D $\quad \mathrm{P}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Cos} \theta$
16 What is the form factor $\left(\mathrm{K}_{\mathrm{f}}\right)$ for sinusoidal AC?
A 1
B 1.11
C 2.22
D 4.44
17 Which formula is used to calculate the impedance (z) of a RLC series circuit?
A $\quad \mathrm{Z}=\mathrm{R}^{2}+\left(\mathrm{x}_{\mathrm{L}} \sim x_{c}\right)^{2}$
B $\quad \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{x}_{\mathrm{L}} \sim x_{c}\right)}$
C $\quad \mathrm{Z}=\sqrt{\mathrm{R}+\left(\mathrm{x}_{\mathrm{L}} \sim x_{c}\right)}$
D $\quad \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{x}_{\mathrm{L}} \sim x_{c}\right)^{2}}$
18 How many electrons are there in the valence shell of a copper atom?
A 1
B 2
C 8
D 18
19 What is the unit for Quantity of electricity?
A Mho
B Coulomb
C Volt /second
D Ampere/second
20 What formula is used to calculate Electro Motive Force (EMF)??
A EMF = Potential difference - voltage drop
B EMF = Potential difference + voltage drop
C EMF = Potential difference + voltage drop/2
D EMF $=$ Potential difference $+2 \times$ voltage drop

Questions: Level 2

1 Calculate the electrical energy in unit consumed by 500 W lamp for 5 hours.
A 0.5 unit
B $\quad 1.0$ unit
C $\quad 1.5$ unit
D 2.5 unit
2 What is the value of hot resistance of a bulb rated as $100 \mathrm{~W} / 250 \mathrm{~V}$?
A 31.25 ohm
B $\quad 62.50$ ohm
C $\quad 312.50 \mathrm{ohm}$
D $\quad 625.00$ ohm
3 Calculate the total power of the circuit of two lamps rated as $200 \mathrm{~W} / 240 \mathrm{~V}$ are connected in series across 240 V supply?
A 50 W
B $\quad 100 \mathrm{~W}$
C $\quad 200 \mathrm{~W}$
D $\quad 400 \mathrm{~W}$
4 What is the change of resistance value of the conductor as its diameter is doubled?
A Increases to two times
B Decreases to four times
C Decrease to half of the value
D No change in value of resistance
5 What is the effect of the parallel circuit with one branch opened?
A Current will remain same
B Whole circuit will not function
C No current will flow in that branch
D Voltage drop increase in the opened branch
6 Which is the application of series circuit?
A Voltmeter connection
B Lighting circuits in home
C Shunt resistor in ammeter
D Multiplier resistor of a voltmeter
$7 \quad$ What is the effect on opened resistor in series circuit?
A No effect in opened resistor
B Full circuit current will flow in opened resistor
C Total supply voltage will appear across the opened resistor
D No voltage will appear across the opened resistor

8 Which type of meter is used to test the polarity of battery?
A Moving iron ammeter
B Moving coil voltmeter
C Moving iron voltmeter
D Dynamo meter type wattmeter
9 What is the voltage drop in resistor ' R_{2} ' in the series circuit?

A 5 volt
B 10 volt
C 15 volt
D 20 volt
10 Which is the application of series circuit?
A Fuse in circuit
B Voltmeter connection
C Electrical lamp in homes
D Shunt resistor in ammeter
11 What is the change in value of resistance of the conductor, if its cross section area is doubled?
A No change
B Decreases 2 times
C Increases 2 times
D Decreases 4 times
12 What is the value of resistance in an open circuit?
A Zero
B Low
C High
D Infinity
13 Which resistor the lowest current flows in a parallel circuit having the values of $50 \wedge, 220 \wedge, 450 \wedge$ and $560 \wedge$ comededwith supply?
A $50 \wedge$
B $220 \wedge$
C $450 \wedge$
D $560 \wedge$
14 Which is inversely proportional to the resistance of a conductor?
A Length
B Resistivity
C Temperature
D Area of cross section

15 What is the reading of the voltmeter ' V '?

A 0 V
B 6 V
C 9 V
D 18 V
16 What is the main cause for below 0.5 lagging power factor in 3 phase system?
A Due to fluctuation of voltage
B True power due to resistive load
C Reactive power due to more inductive load
D Reactive power due to more capacitive load
17 What is the current in neutral conductor in 3 phase unbalanced load in star connected system?
A No current will flow
B The algebraic sum of current in 3 phases
C The algebraic sum of current in 2 phases only
D Higher than the lowest current in any one of the phases
18 What will be the readings of two watt meters $\left(W_{1} \& W_{2}\right)$ in 3 phase power measurement, if the power factor is zero?
A $W_{1} \& W_{2}$ both are positive reading
B $\quad W_{1}$ is Positive and W_{2} is negative reading
C W_{1} is equal to W_{2} but with opposite signs
D W_{1} is zero reading, and W_{2} is negative reading
19 What is the maximum value of voltage for 240 volt RMS?
A 240 V
B 415 V
C 339.5 V
D 376.8 V
20 What is the relation between the line voltage $\left(\mathrm{V}_{\mathrm{L}}\right)$ and phase voltage (Vp) in star connected system?

A $\quad V_{L}=3 \sqrt{V_{P}}$
B $\quad V_{L}=3 V_{P}$
C $\quad \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{P}} / \sqrt{3}$
D $\quad \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{P}} / 3$

21 At what power factor in a 3 phase power measurement the reading of two wattmeters are equal and positive?
A 0
B 1
C 0.5
D 0.8
22 What is the relation between the line current $\left(I_{L}\right)$ and phase current (I_{P}) in delta connected system?
A $I_{L}=I_{P}$
B $\quad I_{L}=3 I_{P}$
C $\quad I_{L}=\sqrt{ } 3 I_{P}$
D $\quad I_{L}=I_{P} / \sqrt{ } 3$
23 Which AC circuit contains the phase relation between voltage (V) and current (I) ?

A Pure resistive circuit
B Pure capacitance
C Pure inductance
D Pure resistance and inductance series circuit
24 In a 3 phase system, if the active power is 4 kw and the apparent power is 5 KVA , calculate the reactive power?
A 1 KVAR
B 2 KVAR
C 3 KVAR
D 4 KVAR
25 What relationship is illustrated in between the current and voltage?

A Current and voltage are "in phase"
B Current and voltage are in out of phase
C Current lags behind the voltage
D Current leads ahead of the voltage

26 Calculate the total power by two wattmeter (W1 \& W2) method, if one of the wattmeter (W2) reading is taken after reversing?
A $W_{1} \times 2$
B $\quad W_{1}$ only
C $W_{1}-W_{2}$
D $\quad W_{1}+W_{2}$
27 In which 3 phase system, the artificial neutral is required to measure the phase voltage?
A 3 wire star connected system
B 4 wire star connected system
C 3 wire delta connected system
D 4 wire delta connected system

Questions: Level 3

1 Calculate the value of resistance ' R_{2} ' in the parallel circuit?

A 2Ω
B 4Ω
C 6Ω
D 8Ω
2 Calculate the resistance value in R_{3} resistor.

A 4 Ohm
B 6 Ohm
C 80 Ohm
D 12 Ohm
3 Calculate the voltage drop across the resistor ' R_{4} ' in the circuit?

A 48 V
B 72 V
C 80 V
D 100 V
4 What happens to the voltmeter if it is connected as an ammeter?
A Low reading
B No deflection
C Meter burns out
D Overshoot deflection
5 What is the effect of electric current on neon lamp?
A Heating effect
B Magnetic effect
C Chemical effect
D Gas ionization effect

6 What is the resistance of the inductive coil takes 5 A current across $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply at 0.8 power factor?
A $48 \wedge$
B $42.5 \wedge$
C $38.4 \wedge$
D 26.6^
7 Calculate the impedance of the circuit $\mathrm{R}=$ $5 \Omega, X L=36 \Omega$ and $X C=24 \Omega$.?

A 69Ω
B 65Ω
C $\quad 13 \Omega$
D $\quad 12 \Omega$
8 Calculate the line current of the 3 phase 415 V 50 HZ supply for the balanced load of 3000 watt at 0.8 power factor is connected in star.
A $\quad 8.5 \mathrm{~A}$
B $\quad 5.2 \mathrm{~A}$
C $\quad 4.5 \mathrm{~A}$
D $\quad 3.4 \mathrm{~A}$
9 Calculate the power factor of coil having resistance of 24Ω, draws the current of 5 A , at $240 \mathrm{~V} / 50 \mathrm{HZ}$ AC supply.
A 0.8
B 0.6
C 0.5
D 0.3
10 Calculate the power factor of R.L.C circuit having resitance $(R)=15 \mathrm{~W}$, resultant reactance $(X)=20 \mathrm{~W}$ connected across $240 \mathrm{~V} / 50 \mathrm{~Hz}$ AC supply?
A 0.5
B 0.6
C 0.7
D 0.8
11 How the low power factor (P.F) can be improved in AC circuits?

A By connecting resistors in series
B By connecting capacitors in series
C By connecting inductors in series
D By connecting capacitors in parallel

12 What is the P.F in 2 wattmeter method of 3 phase power measurement, if one of the wattmeters reading is zero and the other reads total power?
A 0.5
B Zero
C Unity
D Below 0.5
13 How will you obtain positive reading in the wattmeter reads negative reading during 3phase two wattmeter method?
A By interchanging the connections of input terminals
B By disconnecting the connection of current coil in meter
C By reversing the connection of pressure coil in meter
D By reversing the pressure coil and current coil connection in meter
14 What is the power factor if one of the wattmeter gives negative reading in two wattmeter method of 3 phase power measurement?
A 0.5
B Unity
C Between 1 to 0.5
D Between 0.5 to zero
15 What is the effect of the circuit, if 'ab' points are shorted?

A Circuit resistance will be zero
B Same current will flow in all branches
C Supply voltage will exist in each branch
D Total circuit current is equal to each branch circuit current

Module 2 : Basic Electrical - AC circuits - Key paper

Questions: Level 1

SL.No	Key
1	D
2	D
3	B
4	C
5	C
6	A
7	A
8	C
9	B
10	C
11	C
12	D
13	B
14	D
15	D
16	B
17	D
18	A
19	B
20	B

Questions: Level 2

SL.No	Key
1	D
2	D
3	B
4	B
5	C
6	D
7	C
8	B
9	B
10	A
11	B
12	D
13	D
14	D
15	D
16	C
17	D
18	C
19	C
20	A
21	B
22	C
23	B
24	C
25	A
26	C
27	C
14	

Question: Level 3

SL.No	Key
1	C
2	D
3	D
4	A
5	D
6	C
7	C
8	B
9	C
10	B
11	D
12	A
13	C
14	D
15	A

